カオス時系列データの予測のためのパラメータ最適化手法

伊藤憲一

Optimization of the Parameters for Predicting Chaotic Time Series

Ken-ichi ITOH

Abstract

A new method is proposed for predicting chaotic time series based on a local approximation. In the local approximation, a time series is embedded in a state space using delay coordinates and a local predictor is constructed using the nearest neighbors of the current state. The embedding dimension and the number of the nearest neighbors are significant parameters affecting the prediction accuracy. The proposed method aims to select the optimal parameters of the embedding dimension and the nearest neighbor number so as to minimize the prediction error. The efficacy of the proposed method is demonstrated using chaotic time series generated by the Hénon map and the Ikeda map.

Keywords: chaos, time series, prediction, embedding dimension, nearest neighbor

1.まえがき

不規則に変動する時系列データがカオスの 性質を有していれば,カオスの決定論的な特 徴を生かした精度の良い短期予測が可能であ る。このような考え方に基づくカオス時系列 データの予測手法の研究がこれまで活発に行 われてきた[1]~[5]。

カオス時系列データの予測を行う場合,ま ず1変数の時系列データから,埋込みの手法 [6],[7]を用いて多次元空間上にアトラクタ の軌道を再構成する。次に,このアトラクタ の軌道を生成する力学モデルを推定する。こ の推定方法の1つに,局所近似法がある[1] ~[3]。局所近似法は,アトラクタ上のある 点の近傍点は短時間経過後もまだ近傍点であ るという考え方を基に,ある点の将来の値を その近傍点の動きにより推定する方法であ る。

局所近似法においては,埋込み次元や近傍 点の数などのパラメータ値が予測精度に大き な影響を与えるため、これらのパラメータ値 をどのように設定するかが重要である。埋込 み次元については,アトラクタの再構成に必 要な値を,観測データから正確に推定できる かどうかという問題がある。特にデータ数が 少ない場合は推定が困難である[8],[9]。ま た,埋込み次元を推定できたとしても,埋込 みとなる最小の次元が予測精度上最適である 保証はない。一方,近傍点の数についても, 最適値の設定は困難である。近傍点の数が少 なすぎると個々の近傍点の動きに解が大きく 依存するため,解の安定性がなくなる。近傍 点の数が多すぎると予測点から離れた点まで 近傍点として選択されるため,解は予測点の 局所的な動きを反映せず,この結果予測誤差

が増加する。

本論文では,上記問題解決を図るため,局 所近似法の主要なパラメータである埋込み次 元と近傍点の数を最適化するための手法を提 案する。さらに,Hénon map[10]および Ikeda map[11]から生成されるカオス時系列データ を用いて予測精度に関する評価実験を行い, 本提案手法の有効性を示す。

2.局所近似法

カオス時系列データの予測手法である局所 近似法について,その概要と主な問題点を述 べる。

ある時系列データ x1, x2,... xx が, v 次元空間上のカオス力学系から生成されたものとする。この1 変数の時系列データから元の v 次元空間上のアトラクタの軌道を再構成するため,一定の時間遅れ r を用いて m 次元空間上に次の m 次元ベクトル Xi を生成する。

$$X_{i} = (x_{i}, x_{i-\tau}, \dots, x_{i-(m-1)\tau}),$$

$$i = 1 + (m-1)\tau, 2 + (m-1)\tau, \dots, K - 1, K$$
(1)

ここで, $m \ge 2v + 1$ であればこの変換は埋 込みになり, 元のv次元空間上のアトラク タの構造がm次元空間上に保存されること が, Takens により証明されている[6]。その 後 Sauer らにより, アトラクタのボックスカ ウント次元を D_0 とするとき, $m > 2D_0$ であれ ば埋込みになることが示されている[7]。こ のm次元空間上での X_i の動きを推定するこ とにより予測を行う。

局所近似法においては,X:の近傍点は短時 間経過後もまだ近傍点であるという考え方を 基に,X:の将来の値をその近傍点の動きによ り推定する。具体的な方法を以下に述べる。

時刻 *t* までの時系列データ *x*₁~*x*_{*t*}が観測さ れたとき,時間 *p* 経過後の値 *x*_{tep} を予測する 問題を考える。まず観測値 *x*₁~*x*_{*t*}を用いて式 (1)によりアトラクタの再構成を行い,次にア トラクタ上で *x*_{*t*}に対応する点 *X*_{*t*}と時間 *p* 経 過後の予測点 *X*_{tep}の関係を,次式により近似

する。

$$X_{t+p} \cong F(X_t)$$
 (2)

アトラクタ上の X_i の時間変化は,微小時 間内であればその近傍点の時間変化にほぼ等 しいと考え,アトラクタ上の点の中から X_i の近傍点 $X_{\pi_k}(h=12,...n)$ を選択し,これ らのn 個の近傍点の平均的な推移を最小2 乗法により求め,関数Fを推定する。

実際に *x_{tep}* を予測するためには, *X_{tep}の m* 個の要素のうち1番目の要素 *x_{tep}* を求めれば よい。そこで,次の線形近似式により *x_{tep}* を 推定する。

$$\chi_{t+p} \cong f(X_t)$$

= $a_0 + \sum_{k=1}^m a_k \chi_{t+(k+1)r}$ (3)

係数 *a*₀ *μ*₁ *r*.. *μ*_m は次のようにして求める。まず *X*_i を除くすべての *X*_i について, *X*_i とのユークリッド距離 *r* を計算する。

$$r = \left(\sum_{k=0}^{m-1} (x_{i \cdot k\tau} - x_{i \cdot k\tau})^2\right)^{1/2} \tag{4}$$

次に,rの小さい順にn個の点をX_nの近 傍点X₁(h=12,...n)とし,次の最小2乗 条件より係数 a₀ µ₁,... µ た決定する。

$$\sum_{h=1}^{n} (x_{T_{h}+p} - f(X_{T_{h}}))^{2} = \min$$
(5)

この係数の値を式⁽³⁾に代入することにより, *x_{tvp}*を求めることができる。

最小2乗解を得るために必要な近傍点の数 *n*は,次式を満たす必要がある。

$$n \ge n_{\min} = m + 1 \tag{6}$$

局所近似法においては,埋込み次元mおよび近傍点の数nが予測精度に大きな影響を与えるため,これらのパラメータ値をどのように設定するかが重要である。埋込み次元mと近傍点の数nの設定にあたっては,次のような問題点がある。

[埋込み次元 m の問題点]

① *m*>2*D*₀を満たす必要があるため,予測 に先立って*D*₀を推定する必要がある。 ② 観測データから D₀を正しく推定できる かどうか不明である。特にデータ数が少ない 時は推定が困難である[8],[9]。

③ 仮に D₀を正しく推定できたとしても, m>2D₀を満たす m をいくつに設定すべきか という問題がある。従来は m>2D₀を満たす 最小値 mmm を使用してきたが, mmm が予測精 度上最適である保証はない。

[近傍点の数 n の問題点]

① nの最適値は,観測データ数や埋込み 次元などにも依存すると考えられ,一般解を 得るのは困難である。nは,最小2乗解を得 るために必要な最小値 nmin の2倍にするのが 適当であるという報告(4) たあるが,どのよ うな場合でも当てはまるとは限らない。

② n が少なすぎると個々の近傍点の動き に解が大きく依存するため,解の安定性がな くなる。特に実データの場合は通常雑音が含 まれるため,n が少ないと雑音の影響を受け やすい。

③ n が多すぎると予測点から離れた点ま で近傍点として選択されるため,解は予測点 の局所的な動きを反映しなくなり,予測誤差 が増加する。

3.提案手法

ここでは,局所近似法において予測精度上 最適な埋込み次元と近傍点の数を求めるため の手法を提案する。

本手法では,観測データ数がある程度減少 しても,予測に適した埋込み次元と近傍点の 数は大幅に変化しないと考え,観測データの みを用いて予測を行い予測誤差を求め,最適 な埋込み次元と近傍点の数を推定する。すな わち,観測データL個のうち先頭のL/個の データをアトラクタ再構成用の学習データと して用い,残りのL-L/個のデータについて pステップ先を局所近似法により順次予測す る。このL-L/個の予測値と観測値より相対 誤差Eを求める。相対誤差Eの定義は42 節に示す。埋込み次元と近傍点の数を変化さ せながら予測を繰り返し,相対誤差を求め, 予測に適した埋込み次元と近傍点の数を決定 する。

具体的な方法は以下のとおりである。

① *m* = 2 , *E*_f = とする。

② $n = 2 n_{\min} = 2(m + 1)$ とする。

 3 埋込み次元を m, 近傍点の数を n に設 定して予測を行い,相対誤差 E を求める。

④ n の値を1つずつ減少させながら予測 を繰り返し,相対誤差 E が最初に増加する n の直前の値を n_a とする。

⑤ n = 2 nmin = 2(m + 1)とし, n の値を1
 つずつ増加させながら予測を繰り返し,相対
 誤差 E が最初に増加する n の直前の値を nu
 とする。

 ⑥ 近傍点の数 n が n_a のときの相対誤差と n_a のときの相対誤差を比較し,相対誤差が小 さい方の n を n_c,そのときの相対誤差を E_c とする。

E_c と *E_f* を比較する。

 $E_c \ge E_f$ のとき, (®へ。

 $E_c < E_f$ のとき, $m_f = m$, $n_f = n_c$, $E_f = E_c$ とした後,m = m + 1とし,2へ。

 ⑧ 埋込み次元を m_f, 近傍点の数を n_fに決 定する。

4.評価実験

提案手法の有効性を確認するために,評価 実験を行った。ここでは,実験内容,実験結 果および考察について述べる。

4.1 予測対象データ

Hénon map[10]および Ikeda map[11]から 生成されるカオス時系列データを用いた。

Hénon map は,次の2次元写像である。

$$x_{n+1} = y_n + 1 - Ax_n^2$$
,
 $y_{n+1} = Bx_n$ (7)

式(7)において、パラメータ値A=1A,B =03,初期値x₀=03,y₀=03としたとき のxを時系列データとした。 Ikeda map は,次の2次元写像である。

$$x_{n+1} = 1 + \mu(x_n \cos t - y_n \sin t),$$

$$y_{n+1} = \mu(x_n \sin t + y_n \cos t)$$
(8)

ここで *t* = 0 *A* - 6 0/(1 + *x*_n² + *y*_n²)である。 式(8)において,パラメータ値 *μ* = 0 7,初 期値 *x*₀ = 0 3, *y*₀ = 0 3としたときの*x*を時系 列データとした。

42 予測値の評価指標

N ステップ分の観測値 x(i=12,...N)と その予測値 y(i=12,...N)が与えられたと き,次式の相対誤差 E を用いて予測精度の 評価を行う[1]。

$$E = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - x_i)^2}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}}$$
(9)

ここで,
$$\tilde{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
である。

E = 0のとき,予測は完全であることを示 す。E = 1のとき,単に平均値を予測したに すぎないことを示す。

4.3 実験方法

実験では,提案手法の有効性を確認するた め従来手法と提案手法による予測を行い,相 対誤差を比較する。

予測においては,予測対象データの先頭 個のデータをアトラクタ再構成用の学習デー タとして使用し,引き続くN 個のデータに ついてp ステップ先を順次予測する。すな わち,過去の観測値 x_1 , x_2 ,..., x_L および予測 点の観測値 x_i をもとにp ステップ先の予測 値 y_{tep} を求め,観測値 x_{tep} との誤差を求める。 これをi = L + 1からi = L + NまでN回行 い,このN回分の予測値と観測値より相対 誤差Eを求める。また,提案手法ではL 個 のうち先頭の L_j 個を,埋込み次元と近傍点 し,残りの $L - L_j$ 個を,埋込み次元と近傍点 の数の最適化のための予測データとして使用 する。以上の関係を,図1に示す。

実験では,表1に示すパラメータ値を使用 した。学習データ長Lは,100から10000ま で変化させた。予測データ長NはLと同一 とした。予測ステップ数p=1,時間遅れ τ = 1とした。 L_{μ} については,どの程度に設定 するのが有効かを調べるために,Lの25%, 50%,75%とした。

埋込み次元*m* および近傍点の数*n* につい ては,次のように設定した。すなわち,提案 手法では,3章の方法により求めた*m_yとn_y* を使用した。従来手法では,埋込み次元は*m* > 2 D_0 を満たす最小値*m*_{min}を使用し,近傍点 の数は*n* = 2 n_{min} = 2(m_{min} + 1)とした。Hénon mapの D_0 = 1 26, Ikeda mapの D_0 = 1 32であ り,両データとも,埋込み次元*m* = 3,近 傍点の数*n* = 8となる。また,局所近似法に よる予測精度の限界を示すため,埋込み次元 *m* と近傍点の数*n*を変化させて予測を行 い,相対誤差が最小となる限界値およびその ときの*m*,*n*の値を求めた。

表1 パラメータ値 Table 1 Values of parameters.

種類	記号	値
学習データ長	L	100 ~ 10000
予測データ長	N	Lと同一
予測ステップ数	р	1
時間遅れ	τ	1
パラメータ選定用	L_{f}	Lの25%,50%,
学習データ長		75%

4.4 実験結果と考察

(1) 提案手法と従来手法の比較

提案手法および従来手法による予測を行 い,相対誤差を求めた。同時に,局所近似法 において相対誤差が最小となる限界値につい ても求めた。

Hénon map における学習データ長と相対誤 差の関係を図2に示す。ここで,提案手法は *L*が*L*の50%のケースを示す。また,図2

Fig. 1 Experimental method.

で実際に使用した埋込み次元と近傍点の数を 図3,図4に示す。図2より,提案手法では 限界値にかなり近い相対誤差となっている。 一方,従来手法の相対誤差は,学習データ長 が小さいときは限界値に近いが,学習データ 長が5000を超えると限界値から乖離する。す なわち,提案手法は,限界にかなり近い予測 精度を実現でき,学習データ長が大きい程従 来手法に比べてより有効であるといえる。

従来手法の問題点の1つは埋込み次元の不 足と考えられる。図3からわかるように,従 来手法では常に最小埋込み次元の3を用いて いるが,限界値のケースでは学習データ長が 大きくなると埋込み次元は4以上となる。提 案手法では,学習データ長が3000以上で埋込 み次元が4以上となっており,埋込み次元不 足という従来手法の問題点をある程度解決し ている。また,近傍点の数nについて,図 4からわかるように,従来手法では常にn= 2nmm = 2(mmm + 1)を用いているが,限界値 のケースでは学習データ長が大きい場合はこ れよりも大きい値となっている。この点につ いても,提案手法ではある程度対応してい る。

Ikeda map における学習データ長と相対誤 差の関係を図5に示す。ここで,提案手法は L,がLの50%のケースを示す。また,図5 で実際に使用した埋込み次元と近傍点の数を 図6,図7に示す。図5より,提案手法では 限界値にかなり近い相対誤差となっている。 一方,従来手法では,学習データ長が大きく なる程相対誤差は限界値から大きく乖離し, その度合いは, Hénon map の場合よりはるか に大きい。その原因の1つは埋込み次元の不 足と考えられる。図6からわかるように, Ikeda map では,学習データ長が大きい場合 に加えて小さい場合でも,埋込み次元は最小 埋込み次元の3では不足していることがわか る。提案手法では,埋込み次元の不足という 従来手法の問題点をある程度解決している。 また,近傍点の数nについて,図7からわ かるように,常にn=2nmm=2(mmm+1)を 用いるのが最適とはいえず,特に学習データ 長が大きい場合は近傍点の数をさらに増加さ せることが予測精度上望ましいといえる。こ の点についても,提案手法ではある程度対応 している。

(2) Lf の設定方法

Hénon map において *L*, を *L* の25%, 50%, 75% と変化させたときの相対誤差を図 8 に示す。*L*, が *L* の25%, および75%の場合,学習データ長が1000付近で相対誤差がやや増加する。*L*, が *L* の50%の場合の相対誤差は, 25%, 75%の場合に比べて全体的に小さいといえる。

Ikeda map において L_iを L の25%, 50%, 75% と変化させたときの相対誤差を図 9 に示 す。L_i が L の25%の場合,学習データ長が 5000以上で相対誤差が増加する。また,L_i が L の75%の場合,学習データ長が700で相対 誤差が増加する。L_i が L の50%の場合の相 対誤差は,25%,75%の場合に比べて全体的 に小さい。

以上の結果から, Hénon map, Ikeda map

図2 Relative error vs. training data length for the Hénon map.

図 3 Hénon map における学習データ長と埋込 み次元の関係

- 図4 Hénon map における学習データ長と近傍 点の数の関係
- Fig. 4 Number of nearest neighbors vs. training data length for the Hénon map.

Fig. 6 Embedding dimension vs. training data length for the Ikeda map.

- 図 7 Ikeda map における学習データ長と近傍 点の数の関係
- Fig. 7 Number of nearest neighbors vs. training data length for the lkeda map.

図8 Hénon map において Liを変化させたときの相対誤差 Fig. 8 Relative error for different values of Li for the Hénon map.

ともに L_Fは L の50%程度に設定するのが適 当であるといえる。

(3) 実験結果のまとめ

① 提案手法を用いることにより,埋込み 次元,近傍点の数の最適化を図ることがで き,局所近似法の限界に近い予測精度を達成 することができた。特にIkeda map におい て,提案手法は従来手法に比べて予測精度を 大幅に改善することができた。

2 提案手法において, L_fはL の50%程度
 に設定するのが適当である。

③ 従来手法では,予測に先立って埋込み に必要な次元を推定しなければならないが, 提案手法ではこの推定は不要であり,最小埋 込み次元が不明なデータにも適用可能であ る。

5.むすび

本論文では,カオス時系列データの代表的 な予測手法である局所近似法において,埋込 み次元と近傍点の数を最適化する手法を提案 した。さらに,Hénon map および Ikeda map から生成されるカオス時系列データを用いて 予測精度に関する評価実験を行い,提案手法 は局所近似法の限界に近い予測精度を達成で きることを示した。

今後,提案手法について,実データを用い た評価実験を行っていきたいと考える。

文 献

- J. D. Farmer and J. J. Sidorowich, "Predicting chaotic time series," *Phys. Rev. Lett.*, vol.59, no.8, pp.845-848, Aug. 1987.
- [2] G. Sugihara and R. M. May, "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series," *Nature*, vol.344, no.19, pp.734-741, April 1990.
- [3] J. Jiménez, J. A. Moreno, and G. J. Ruggeri, "Forecasting on chaotic time series: A local optimal linear-reconstruction method," *Phys. Rev.*

A, vol.45, no.6, pp.3553-3558, March 1992.

- [4] M. Casdagli, "Nonlinear prediction of chaotic time series," *Physica D*, vol.35, pp.335-356, 1989.
- [5] A. Lapedes and R. Farber, "Nonlinear signal processing using neural networks: Prediction and system modeling," *Los Alamos National Laboratory Report*, no.LA-UR-87-2662, 1987.
- [6] F. Takens, "Detecting strange attractors in turbulence," in Dynamical Systems and Turbulence, eds. D. A. Rand and L. S. Young, *Lecture Notes in Mathematics*, vol.898, pp.366-381, Springer, Berlin, 1981.
- [7] T. Sauer, J. A. Yorke, and M. Casdagli, "Embedology," *J. Stat. Phys.*, vol.65, no.3,4, pp.579-616, 1991.
- [8] J. Theiler, "Spurious dimension from correlation algorithms applied to limited time-series data," *Phys. Rev. A*, vol.34, no.3, pp.2427-2432, September 1986.
- [9] J. P. Eckmann and D. Ruelle, "Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems," *Physica D*, vol.56, pp.185-187, 1992.
- [10] M. Hénon, "A two-dimensional mapping with a strange attractor," *Commun. Math. Phys.*, vol.50, pp.69-77, 1976.
- [11] K. Ikeda, "Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system," *Opt. Commun.*, vol.30, no.2, pp.257-261, 1979.